A gradient-based adaptive learning framework for online seizure prediction
نویسندگان
چکیده
Most of the current epileptic seizure prediction algorithms require much prior knowledge of a patient’s pre-seizure electroencephalogram (EEG) patterns. They are impractical to be applied to a wide range of patients due to a very high inter-individual variability of EEG patterns. This paper proposes an adaptive prediction framework, which is capable of accumulating knowledge of pre-seizure EEG patterns by monitoring long-term EEG recordings. The experimental results on five patients indicate that the proposed prediction approach is effective to achieve a personalized seizure predication for each patient using a gradient-based adaptive learning framework.
منابع مشابه
Designing stable neural identifier based on Lyapunov method
The stability of learning rate in neural network identifiers and controllers is one of the challenging issues which attracts great interest from researchers of neural networks. This paper suggests adaptive gradient descent algorithm with stable learning laws for modified dynamic neural network (MDNN) and studies the stability of this algorithm. Also, stable learning algorithm for parameters of ...
متن کاملAdaptive Control of Machining Process Using Electrical Discharging Method (EDM) Based on Self-Tuning Regulator (STR)
In order to improve the optimal performance of a machining process, a booster to improve the serve control system performance with high stability for EDM is needed. According to precise movement of machining process using electrical discharge (EMD), adaptive control is proposed as a major option for accuracy and performance improvement. This article is done to design adaptive controller based o...
متن کاملAn Online Learning Algorithm with Adaptive Forgetting Factors for Feedforward Neural Networks in Financial Time Series Forecasting
In this study, an online learning algorithm for feedforward neural networks (FNN) based on the optimized learning rate and adaptive forgetting factor is proposed for online financial time series prediction. The new learning algorithm is developed for online predictions in terms of the gradient descent technique, and can speed up the FNN learning process substantially relative to the standard FN...
متن کاملRobust and Adaptive Online Time Series Prediction with Long Short-Term Memory
Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this ...
متن کاملAdaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach
Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJDMB
دوره 10 شماره
صفحات -
تاریخ انتشار 2014